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Abstract: As soon as the signal of the analysed particle is entangled with orders of magni-
tude more background, its analysis benefits from the use of a pattern classification method to
discriminate the signal out of the background candidates, with an improvement that rises when
the number of variables used is increased. The method that we present here is the basic Linear
Discriminant Analysis (lda) and its modifications : two improvements made necessary by the
extreme signal-to-background conditions encountered in our field: the use of cascaded cuts and
of a locally optimized criterion.

We present the various algorithms, the way of use and tips, as well as an example and results
obtained for the multi-strange baryons Ξ and Ω in star’s 200 GeV Au-Au year 2001 data. We
show that optimized multicut lda has a higher performance than classical cuts, provides a very
fast and easy cut optimization, can be used to estimate a systematic error due to the cuts, and
allows for an automatic and optimal use of the inner tracking layers in the cuts.

Introduction

This note describes the adaptation of Linear Discriminant Analysis (lda), a pattern classification method
widely used in data processing, to the conditions of a strange baryon analysis in our field, i.e. to the extraction

of a small amount of signal out of an overwhelming background. Some developments were necessary due to the
difference in statistics between the signal and the background.

The small production yield of the searched particles and the so far limited data statistics indeed made it
necessary to optimize the cuts that select the signal out of the background. The development of a new selection
method aimed both at raising the final signal statistics in a fast and easy-to-use way, and at simplifying the cuts
optimization by transforming the cuts space into a monodimensional sub-space, which is impossible to do in a
classical analysis. In this note, the terms “classical analysis” or “classical cuts” will be employed for a selection
based on cutting all the observables separately, by a “steep cut”.

The resulting method, the optimized multicut lda, can be used in any situation of our field where the
signal of the particle searched is drowned in a background that is several orders of magnitude higher, as soon as
two or more variables are available for cutting.

The first section of this note is a brief introduction to the field of pattern classification. In the second
section, examples of usable variables are given. The third section explains where signal and background candidates
can be taken from to train a supervised method. Then, sections four and five explain how Fisher-lda is working
and what are the improvements brought to this basis to build a method that is usable in our environment. The
lda cut-tuning “in practice” is explained in the sixth section, while the last one shows the results obtained on the
Ξ and Ω multi-strange baryons on the 200 GeV Au-Au year2 dataset.

1



1. Pattern classification

Paragraphs 1 and 4.2 have been written with the great help of [1, 2]. Paragraph 4.2 is also inspired from
[3]. [2] has also been useful for paragraph 5.5.4.

The documented source code of a plug-and-play C++ class which (among other functionalities) calculates
lda directions is available upon request 1.

1 Pattern classification

1.1 General issue

The general matter is a pattern classification problem. It consists in classifying an object in a category
(class). In the general case, the input data are :

– p classes of objects of the same type ;

– n observables defined for all the classes ;

– for each of the p classes, a sample of Nk objects, k being the class index.

There exists a more general case in which the observables are not necessarily defined for all the classes, and in
which even the classes themselves may not be defined : there are pattern classification algorithms which are able
to determine themselves the number of existing classes and their characteristics 2. Having samples whose class is
known is therefore not mandatory – but it is always better so as to obtain a good performance.

So the aim is the creation of an algorithm which, from the input data listed above, is able to classify a
new object into one of the classes defined. In general, this is realized through 5 distinct phases :

– data collection ;

– classes characterization ;

– choice of a pattern classification algorithm ;

– training (or learning) ;

– tests.

After the test phase, any of the 4 previous phases can of course be changed according to the results obtained.
Figure 1 describes how a pattern classification algorithm
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Fig. 1 – Pattern classification algorithm

works.
The phase involving the detectors is the data collection,

which is low-level information. In our case, it is the collection of
the tpc points or of the hits in the Silicon detectors, for example.

The phases of segmentation and feature extraction trans-
form the low-level information into mid-level information, the lat-
ter being generally smaller in size and more informative. In our
case, segmentation corresponds for example to track and vertices
reconstruction, and feature extraction is the calculation of the va-
rious cut variables, like the geometrical and kinematic parameters
of the decay vertices. The segmentation phase is often the most
difficult part to set up.

Classification, better called “sorting”, is not the last phase.
It consists in calculating high-level information from the previously
mentioned mid-level information, most of the time only a handful

of variables, not to say just one, but which are very informative. At this stage, the sorting is done, as two objects
can be compared together.

Yet, the final decision can be taken only after the post-treatment phase, which takes into account an
efficiency and a false alarms rate in the calculation of the decision. This decision corresponds to the minimization
of a cost.

In our case, the number p of classes is 2, and from now they will be called signal and background (or
noise). The signal is made of the real searched particles (Ξ or Ω in our case), while the background is made of all
the other candidates (for the multistrange analysis : all the other xiVertex : combinatorial, correlations, other real
particles,...).

1. Current e-mail address : julien.faivre@pd.infn.it.
2. This mode of operation is called unsupervised learning, as opposed to supervised learning for which the class to which each

candidate of the training sample belongs to is known.
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1. Pattern classification

1.2 Problem of overtraining

The test phase is essential to obtain a performant algorithm, as its performance is not the same if calculated
on the training sample or on a test sample. The latter is always worse than the former.

Fig. 2 – Performance of various bounda-
ries on their training sample
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This is illustrated by figure 2, in which the distributions of two classes are shown (in green and red)
for the training sample, as well as three examples of border : a line L, a simple curve C which describes a bit
better the boundary between both classes, and a complex parametrization P that describes the samples almost
candidate-by-candidate.

The result of those boundaries on a test sample will be very different : the line will have a fair performance
and the simple curve will have a good one, but the performance of the complex curve will be bad.

The reason why is that the distribution of two samples is globally close to identical, but is locally dif-
ferent, because of their finite statistics and of possible systematic differences ; a pattern classification algorithm can
therefore not be based on a too local description of the training samples. These observations are important in our
case, as will be shown in part 5 (p. 12).

1.3 Estimation of the performance

No discriminancy criterion will be defined here, as we have a cost function at disposal, which will be used
directly to tune the cuts.

In all that follows, S will refer to an amount of signal and N to an amount of background (noise), except
when explicitly mentioned.

Let’s first define the couple of variables that will be used in what follows as indicators of cuts’ performance :

– the amount of signal S : it is the simplest indicator ;

– the background rejection 1− εN =
Nremoved by cuts

Npre-cuts
is the proportion of background that is rejected by the cuts ;

– the efficiency or sensitivity or detection probability εS =
Spost-cuts

Spre-cuts
is the proportion of signal that is kept by

the cuts ;

– the purity or specificity S
S+N

is the proportion of kept candidates that actually are signal ;

– the false alarms rate N
S+N

is the proportion of kept candidates which are actually background ;

– the signal to noise ratio S
N

;

– the relative uncertainty, connected to the inverse of the significance.

All these variables are 2 by 2 independent (except for the purity, the false alarms rate and the signal to noise ratio),
and hence bring varied information.
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2. Observables : cuts variables

The expression of the relative uncertainty changes with respect to the analysis. Its most general expression
is

σ
S

S
in the framework of signal counting. Details about the expression of σ

S
in our case can be found in § V-2.4

and V-3.2 of [4].

The cost function used will be the relative uncertainty, as it is the indicator that directly guarantees the
smallest possible statistical error on the result. It is yet common to show other indicators as well to determine the
performance of a method. Doing so requires the association of two of them, such as :

– signal with respect to the signal to noise ratio ;

– signal with respect to purity : this diagram is strictly equivalent to an efficiency-purity diagram, and also
strictly equivalent to the diagram mentioned below ;

– efficiency with respect to the false alarms rate : this diagram is called “roc curve” (Receiver Operating
Characteristic), and is widely used when it comes to comparing different pattern classification methods ;

– relative uncertainty with respect to signal.

Changing the cuts obtained by a given method defines in such diagrams a zone made of the points that
are reachable by this method. This zone may be a surface (case of the classical cuts) or a curve (case of lda).
In a signal-S/N or an efficiency-purity diagram, a movement along the curve (or along the border of the surface)
inducing an improvement of one of the variables results in a deterioration of the other one. The relative uncertainty
being the cost function, the behaviour is different in a diagram showing this latter variable versus the signal :
in such a diagram, the curve is a decreasing, then increasing function 1 which has a global minimum. The latter
corresponds to the searched optimal cut.

2 Observables : cuts variables

The variables used as characteristics of a class may be chosen amongst the parameters which are directly
accessible, or may be made from those ones. In the most general case, a variable used in a pattern classification
method may be the discriminating output variable of a previous and possibly different pattern classification method.
The number of variables to use is a study by itself. It should in general be as high as possible, so as to have the
highest possible discriminancy, but it may be limited for statistics or processing time reasons. Methods exist to
reduce this number of variables while avoiding a drop in discriminancy (see the end of section 5).

In this section, we give an example of the observables that have been chosen for a Ξ and Ω analysis by
topological reconstruction in Au-Au 200 GeV collisions.

We have employed 25 variables, almost all directly accessible, which can be split into four categories : 10
geometrical variables, 11 pointing angles, one kinematic variable, and the 3 numbers of hits in the tpc. Because
of the intrinsic characteristics of the linear discriminant analysis method, even multicut (cf. § 5), the distributions
(at minimum the signal’s) have to show only one peak whenever possible, for the method to be fully efficient. It
is also preferable to use reasonably well shaped distributions, e.g. the pointing angle value is better than using its
cosine, as the cosine function will flatten everything towards 1, which may cause the algorithm to fail using that
variable in the optimization, since the peak would be extremely narrow.

2.1 Usual geometrical cuts

The 2-dimension geometry of a v0Vertex is shown in figure 3. The charged tracks are curved by the axial
magnetic field (here perpendicular to the figure plane), and the reconstruction is imperfect because of the finite
resolution of the detectors : the tracks of the two decay daughters don’t cross and the trajectory of the reconstructed
V0 doesn’t meet the primary vertex.

In this figure, the trajectory of each of the daughter particles is a thick solid line, while the extrapolations
towards the primary vertex are thin solid lines. The trajectory of the reconstructed V0 is a thick dashed line.

1. The optimum being taken as a reference, tightening or loosening the cuts makes the amount of signal drop more rapidly or raise
less rapidly than the error bar, in the first case because of the small amount of background, and in the second case because the amount
of background raises faster than that of signal.
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2. Observables : cuts variables

V0DL

V0Dg

Pion (meson)

Proton (baryon)

Primary vertex

V0Pvx
BarPvx

MesPvx

Fig. 3 – 2-dimension geometry of a v0Vertex ; see text for the notations

Five characteristic distances constitute geometrical cuts which can be used to discriminate the background
(fortuitous associations of tracks) and the signal (Λ or K0

s for example). These characteristic variables can generally
be divided into 3 groups :

– the distances of closest approach between the daughters, in blue ;

– the distances of closest approach between a particle and the primary vertex, in green ;

– the distances between the vertices (decay vertices and primary vertex), including the decay lengths, in red.

The abbreviation “dca” will sometimes be used instead of “distance of closest approach”.

Pion (meson)

Proton (baryon)

XiDg

Bachelor

XiXiPvx

BacPvx

V0FalseDL

XiDL

Fig. 4 – 2-dimension geometry of a xiVertex ; see text for the notations

This splitting into three groups can also be made for the xiVertex, for which five additional variables are
defined, which makes a total of 10. They are shown in figure 4.

The 10 geometrical cuts used are :

– the distance of closest approach V0Dg between the Λ daughters ;

– the distance of closest approach XiDg between the Ξ or Ω daughters ;
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2. Observables : cuts variables

P

V

X

−→pK

−→pπ

−→pp

−→w
−→u

−→pΞ

−→pΛ

−→v
Fig. 5 – Vectors used in
the definition of the poin-
ting angles

– the Ξ or Ω decay length XiDL ;

– the Λ decay length V0TrueDL ;

– the false Λ decay length V0FalseDL, i.e. the distance between its decay vertex and the primary vertex ;

– the distance of closest approach XiPvx between the Ξ or Ω and the primary vertex ;

– the distance of closest approach V0Pvx between the Λ and the primary vertex ;

– the distance of closest approach BacPvx between the bachelor and the primary vertex ;

– the distance of closest approach MesPvx between the meson and the primary vertex ;

– the distance of closest approach BarPvx between the baryon and the primary vertex.

Most of these variables are partly correlated. E.g. the false Λ decay length is highly correlated with the Λ decay
length and with the Ξ or Ω decay length. Or also the bachelor-to-primary distance of closest approach is correlated
with the Ξ or Ω decay length.

2.2 Pointing angles

The pointing angles are angles which can be defined between the momentum of a particle and the direction
given by two vertices. Let P , X and V be respectively the primary vertex, the Ξ or Ω decay vertex, and that of
the Λ, and let’s define those three vectors : −→u =

−−→
PX, −→v =

−−→
XV and −→w =

−→
PV = −→u + −→v . The eleven pointing

angles that are used are :

– (−→u ,
−→
pX
Ξ ), (−→u ,−→pΛ), (−→u ,

−−→
pX

Bac), (−→u ,
−−→
pV

Mes), (−→u ,
−−→
pV

Bar) ;

– (−→v ,−→pΛ), (−→v ,
−−→
pV

Mes), (−→v ,
−−→
pV

Bar) ;

– (−→w ,−→pΛ), (−→w ,
−−→
pV

Mes), (−→w ,
−−→
pV

Bar).

The momenta of the Xi and of the bachelor are taken at the Xi decay vertex, those of the meson and
of the baryon are taken at the V0 decay point. The various vectors are shown in figure 5, as an example of an Ω
decay.

2.3 Cosine of the decay angle

The cosine of the decay angle, or cos θ∗, is usually used to discriminate the signal and the background or
the correlations. It is defined as follows : let −→p be the momentum of the decaying particle, and −→p1 and −→p2 those of
the daughter particles in the lab frame. Let

−→
p∗1 and

−→
p∗2 = −−→

p∗1 be these momenta in the center of mass rest frame.
The cosine of the decay angle is defined as :

cos θ∗ = cos(−→p ,
−→
p∗1 ) (1)
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4. Principles of basic lda

The distribution of this variable shows strong peaks at −1 and +1 for background and correlations. It
can for example be used to get rid of the Ξ when Ω is searched, or of the Λ when K0

s is searched. The cos θ∗ of the
v0Vertex can also be used.

2.4 Number of hits in the tpc

The three last variables are the number of hits left in the tpc by each of the three tracks of the xiVertex.
The characteristics of the background are indeed different for low or high numbers of hits in the tpc.

3 Learning samples

The method developed here is a supervised learning method, it therefore needs a sample of each class
separately.

The background sample is made of candidates coming from the real data. They are mainly background,
but the proportion of signal may be a nuisance, hence the latter has to be removed : this can be done by a simple
invariant mass cut around the particle mass. Another, larger, invariant mass window allows to select only the
candidates that are reasonably close to the particle mass, as it is in this area that the background has to be
lowered.

The signal sample is obtained from the simulation : it is made of the embedding’s associated candidates.

Fig. 6 – Ξ+Ξ invariant mass
distributions of the training
samples : signal (left) and back-
ground (right) ; the limits of the
various cut windows are shown
in blue
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Figure 6 shows as an example the invariant mass distributions of the Ξ signal and background candidates
and the cut windows used. The Ξ signal peak – excluded by the most internal window – is clearly visible in the
background sample, although the cuts at this stage are still loose.

The training samples are dE/dx-filtered and the cuts that are not used in lda are also applied, for lda to
have a better performance. Those cuts include : a minimal transverse momentum, a maximal rapidity, a maximal
deviation of the reconstructed Λ mass compared to the pdg value, and also a loose filtering on the number of hits
in the tpc for each track, so as to get rid of the worst tracks before running lda training and filtering.

4 Principles of basic lda

lda stands for Linear Discriminant Analysis, and refers to a set of pattern classification methods which
common property is to consider that each class fills, in the space defined by the n observables, a convex volume
which boundaries are defined by hyperplanes.
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4. Principles of basic lda

4.1 Advantages of using lda

4.1.1 Improvement in statistics brought with respect to the classical cuts

The principle of the lda method is illustrated by the three drawings of figure 7. It has been supposed
that 2 observables, x and y, were accessible to the observer, and the signal and background distributions have
respectively been drawn in green and in red. The cyan blue zones are removed by the cuts, which are represented
by the blue lines.

The two first drawings show the behavior of the classical cuts, i.e. steep cuts on one or several of the
observables, and it has to be kept in mind that the number of background candidates is way higher than that of
signal candidates. On the top plot, the cuts chosen are loose for the efficiency to be high, but, as a consequence,
the pollution of the signal by the background is high. The middle plot shows tighter cuts which avoid having an
overwhelming background, but the price to pay is a small efficiency.

lda consists in cutting along a linear combination of all the observables, rather than along each of the
observables. This linear combination is defined by an lda direction (or axis). The result, shown in the bottom plot,
is a better discrimination between both classes (signal and background). This translates into a more interesting
position of the cuts in the efficiency-purity diagram than all the positions accessible to the classical cuts.

The algorithm consists in calculating the direction of this axis so as to have an optimal discrimination
between the classes according to a given criterion. A hyperplane perpendicular to the axis is then associated to
this maximal discriminancy and is called best discriminancy hyperplane. Three examples of criterion will be given
in the next paragraphs, as well as the corresponding algorithms.

4.1.2 Easiness of cut tuning

A second interest of lda is that the cuts can very easily be tuned to reach the optimal point.
The cuts optimization is realized by minimizing the relative error on the final result. It is therefore a

matter of minimization of a function that is defined from the cuts space to R.
In the case of the classical cuts, the dimension of the cuts space is the number of variables used. This space

is therefore R
n. But minimizing a function defined from R

n to R is very complex – and it is actually empirically
realized.

From the fact that it works with a linear combination of the observables, lda brings a transformation from
the R

n space to a curve that is equivalent to R, which means that one now has to deal with the easy minimization
of a function from R to R. Indeed, one only needs to calculate the relative error as a function of the lda cut
tightening or loosening and to determine its minimum, given that, on top of this, this function decreases and then
increases, and therefore doesn’t lead to any ambiguity on the position of the minimum.

4.1.3 Cuts for particular conditions

Some areas of the phase space have a different proportion of background and hence may need tighter or
looser cuts than the “usual” cuts.

In the case of e.g. a cut loosening, the classical cuts require to find again the minimum of a function
defined from R

n to R, while with lda, a simple loosening of the lda cut, until the new minimum is reached, makes
it. The amount of time that is saved is considerable, as this operation needs to be done for each new collision system
or collision energy, each centrality range, and, if wished, for low and high transverse momenta, where statistics is
poor.

But it is also easy to calculate a new set of cuts, optimized for a specific area of the phase space, by
building the training samples with candidates which belong only to this area, typically low- or high-p⊥.

4.2 Fisher criterion

The optimal direction found obviously depends on the criterion used for its calculation. The most fre-
quently used is the Fisher criterion, which gives what is called Fisher lda, introduced by Ronald Fisher in 1936
[5] 1.

1. It took me a while to find the electronic version of the original paper so I share the url : you can get it on the Adelaide library
website : www.library.adelaide.edu.au/digitised/fisher/stat math.html
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4. Principles of basic lda

Fig. 7 – Principle of basic lda : example
with 2 variables.

When classical cuts are applied (top
and middle drawings), one has to choose
between a good efficiency and a good signal
to noise ratio.
An lda cut (bottom drawing) gives a
better compromise.

On the efficiency-purity graph below,
the zone of the best possible points rea-
chable by tuning the classical cuts is drawn
in mauve, while the position of a point
obtained by lda cuts is in green.
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4. Principles of basic lda

The advantage of the Fisher criterion is that, on top of being easy to settle, it gives the exact expression
of the direction of the lda vector, without a need for an optimization algorithm. There is indeed a maximization,
but the solution is analytical.

Let’s call ∆ a line and −→u its driving vector, and let’s project the points of the learning samples on it. Let
µ1 and µ2 be the means of the distributions of the projected points for classes 1 and 2 respectively, and σ2

1 and
σ2

2 be the “dispersions” (variances not normalized by the number of observations) : σ2
k =

∑

−→x ∈Dk
(−→u .−→x − µk)2.

The Fisher criterion consists in requiring that the means of the distributions be as far as possible one from the
other and that their widths be as small as possible, for the overlap between the distributions to be minimal. This
translates into a maximization of �

�

�



λ(∆) =

|µ1(∆) − µ2(∆)|2
σ2

1(∆) + σ2
2(∆)

(2)

and has some analogy with the resolution power of a telescope, as shown by figure 8.
On this figure, the variable x is respectively the

σ2

µ1 µ2
x

y

σ1

µ2 − µ1

Fig. 8 – Analogy between the Fisher criterion and
the resolution power of a telescope

lda coordinate (i.e. the curvilinear abscissa on the line ∆,
obtained from the scalar product) or the position (spatial or
angular) depending whether we consider lda or a telescope ;
y stands for a count number or for a received amount of
light. A good separation power requires not only that the
means be far, but also that the Airy stains don’t overlap,
i.e. that the width of the distributions be small with respect
to the distance between the means.

The lda direction is therefore :

∆LDA = ∆ / λ(∆) = λmax

In the following, we will call n the number of obser-
vables, −→u the normalized n-coordinate vector which drives
the line ∆ (which itself characterizes, together with the cut
value, the hyperplane which plays the role of a border bet-
ween both classes), and Nk, k ∈ {1; 2} the number of objects

in the training sample of class k. The sets of the sample candidates will be called Dk.
Let −→x be an observation (so an n-coordinate vector) : its projection on line ∆ is simply the scalar product

with −→u and writes : −→x .−→u . The mean of a distribution is :

−→mk =
1

Nk

∑

−→x ∈Dk

−→x

and the mean of the projection on −→u is therefore :

µk =
1

Nk

∑

−→x ∈Dk

−→x .−→u = −→mk.−→u

The distance between the projected means can now be calculated :

|µ1 − µ2| = |(−→m1 −−→m2).−→u |

Using the transposed matrices – we write here tM for the transposed matrix of M –, this latter formula can be
re-written into |t−→u (−→m1 −−→m2)|. Hence we obtain :

(µ1 − µ2)
2 =

(

t−→u (−→m1 −−→m2)
)2

=
(

t−→u (−→m1 −−→m2)
) (

t(−→m1 −−→m2)−→u
)

= t−→u (−→m1 −−→m2).
t(−→m1 −−→m2)−→u

= t−→u SB
−→u

with SB = (−→m1 −−→m2).
t(−→m1 −−→m2) the between-class scatter matrix.
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4. Principles of basic lda

A matrix SW can similarly be defined to calculate σ2
1 +σ2

2 . SW is actually the within-class scatter matrix.
The contributions of the various classes being dissociable, let’s calculate σk :

σ2
k =

∑

−→x ∈Dk

(−→u .−→x − µk)2

=
∑

−→x ∈Dk

(

t−→u (−→x −−→mk)
)2

=
∑

−→x ∈Dk

t−→u (−→x −−→mk).t(−→x −−→mk)−→u

= t−→u Sk
−→u

with Sk =
∑

−→x ∈Dk

(−→x −−→mk).t(−→x −−→mk), and we have very simply SW = S1 + S2.

Thus we can now write the Fisher criterion matricially :

λ(∆) = λ(−→u ) =
|µ1 − µ2|2
σ2

1 + σ2
2

=
t−→u SB

−→u
t−→u SW

−→u (3)

This expression being invariant by transformation of −→u into α−→u , α ∈ R, its maximization is equivalent
to the maximization of t−→u SB

−→u under the condition t−→u SW
−→u = 1. The Lagrange multiplier (here, ω) method can

then be used : the maximum is reached when :

∀j ∈< 1; n >
∂

∂uj

(

t−→u SB
−→u − ω(t−→u SW

−→u − 1)
)

= 0 (4)

The development of the matrix products gives, for S = SW or S = SB :

∂ t−→u S−→u
∂uj

=
∂

∂uj

(

n
∑

l=1

n
∑

k=1

sl,kuluk

)

=

n
∑

l=1

n
∑

k=1

sl,k (δj,luk + δj,kul) (Swapping the sums and the derivation)

= 2
n
∑

k=1

sj,kuk (Because SW and SB are symmetric)

Equation (4) can then be re-written :

(4) ⇔ 2SBu − 2ωSW u = 0

⇔ S−1
W SBu = ωu

We therefore proved that a vector −→u maximizing expression (3) obeys :

∃ ω ∈ R / S−1
W SB

−→u = ω−→u
t(−→m1 −−→m2).−→u being a scalar, SB

−→u is always collinear to −→m1 −−→m2, and the expression becomes :

∃ ξ ∈ R / S−1
W (−→m1 −−→m2) = ξ−→u

A normalization of S−1
W (−→m1 −−→m2) gives the driving vector of the lda axis :

�

�

�



−→u =

S−1
W (−→m1 −−→m2)

‖S−1
W (−→m1 −−→m2)‖

(5)
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5. lda improvements

The Fisher criterion can hence be analytically resolved, which thus provides a low calculation time method, and
avoids the need for the implementation of a numerical optimization algorithm.

As it has been said in paragraphs 1.3 (p. 3) and 4.1 (p. 8), determining the value of the cut along the axis
is done by adjusting this cut so as to obtain the lowest relative uncertainty. There is only one cut to change, so the
process is simple and fast.

4.3 Problems which show up

Using the Fisher criterion, even though it is satisfactory for most of the applications, raises several problems
in our case.

The first point to mention is that the lda axis that is de-
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Fig. 9 – Case of a denominator tending
towards zero in the Fisher criterion

termined with the Fisher criterion gives the best discriminancy hy-
perplane only when the distributions of both classes are gaussian [2] :
this criterion is adapted to the “simple” distributions which are al-
most completely described by their mean and their standard devia-
tion. This implies that for the other distributions – and particularly
in our case –, it is possible to find a criterion which gives a better
discriminancy than Fisher. From the arguments stated above comes
the need for taking care of the local variations of the distributions.
The Fisher criterion indeed takes into account the distributions only
globally, as this is the only information carried by their mean and
standard deviation. A better discriminancy therefore requires a local
description of the distributions, yet without falling into the excess
represented by the curve P in figure 2 p. 3.

Then, we want to apply lda not to simply separate two
classes, but to actually extract candidates of a class (the signal) out
of those of another class (the background) which has no interest for us,
which statistics is overwhelming (orders of magnitude higher than that

of the signal population 1), and which, contrary to the signal, populates almost the whole cut space. The background
population which lies above the signal is therefore only a local part of the whole background distribution, and can
not be correctly described by the usual global parameters (mean and standard deviation). The two main differences
with the usual applications are this difference in statistics, and the fact that the range of the background distribution
covers that of the signal distribution. In other words, some background candidates may have a geometry that no
signal candidate can have, but all signal candidates have a geometry that a background candidate can have.

And finally, the Fisher criterion consisting into maximizing a ratio, it sometimes happens that the deno-
minator reaches values that are close to zero (this is the case of distributions which standard deviation along some
direction is small, for example when there is a strong linear correlation between two variables). Figure 9 shows a
real case, for which the blue axis – the best direction Fisher-wise – is almost perpendicular to the direction that
one would wish to find, materialized by the mauve axis. Yet, this problem can be solved by a whitening of the data
(removal of the linear correlations), which principle will be explained in § 5.5.4.

5 lda improvements

5.1 Multicut-lda

The second problem in the list of the previous subsection, that is to say the high predominance of the
background over the signal, can be solved by the multicut-lda. This method also allows, to a certain extent, a
better management of the first problem, i.e. taking care of the local parts of the distributions, although a real and
much better solution will be brought in the next paragraph by changing the criterion.

Multicut-lda consists in applying successively several lda cuts. The first cut is determined by a learning
over all the candidates of both samples. A cut value is then determined according to criteria which will be described

1. After the reconstruction cuts, there is about 25 000 times more background than signal in a central event for the Ξ ; this factor
reaches about 400 000 for the Ω.

12
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Fig. 10 – Mechanism of the multicut-lda

method :

The first step is illustrated by the top
figure : a first lda direction (in blue)
is calculated with all the candidates of
the training samples. The cut value is
determined in a way that its efficiency on
the signal is close to 100 %. The area cut
is shown in cyan-blue.

The next step is described by the bot-
tom figure : the candidates of the former
cyan zone have been removed from the
training samples, and a second lda di-
rection is calculated with the remaining
candidates. The cut value is determined as
for the previous one. A third cut can then
be calculated, and so on.

x

y

1st best axis

x

y

2nd best axis

in paragraph 5.4 (p. 17). This first cut is applied to the learning samples, and a second lda direction is calculated
with the remaining candidates. A cut value for this second direction is then calculated, and so forth. Figure 10
illustrates the mechanism of this method.

Multicut-lda therefore provides a set of lda directions, each one being a vector −→ui of the observables
space (n coordinates). It also provides a cut value ci associated to direction −→ui . The value of ci depends on −→ui ,
and the direction −→ui is a function of −−→u

i−1
and c

i−1
. Each pair (direction , cut) defines a hyperplane, and this set of

hyperplanes demarcates a connex and even convex shape, by construction 1, in which the candidates are considered
as being signal.

The number of lda cuts to apply can be determined only empirically. There is obviously no lower limit
to the number of cuts, but the higher this number, the more the extraction of the signal out of the background
will be possible. This technique enables to get rid of the purely linear character of the lda boundary between the
background and the signal, yet without loosing the linearity of the algorithm itself.

There are however two upper limits. The first one comes from the fact that a too local description of the
distributions leads to a poor discriminancy, as explained in paragraph 1.2 (p. 3) (see in particular figure 2). The
second one is due to the fact that as one goes along applying the lda cuts, the number of candidates in the training
samples decreases, and may at some step become insufficient to calculate correctly the next lda direction.

Paragraph 5.4 (p. 17) explains how the first of these two upper limits can be determined, via the minimum
number of candidates removed by each cut, which directly determines the second upper limit. It is the latter which,
for the Ω, will limit the number of lda cuts used. For the Ξ, this number is limited by the first condition.

1. The method can easily be modified for the convex zone to become the area which is removed rather than selected, but the region
where the signal is more likely to be is more probably convex than concave in the general case. The change to make is a replacement
of the cut criterion “Keep x if (x > c1).(x > c2). · · · ” by “Keep x if (x > c1) + (x > c2) + · · · ”, with . and + the logical symbols and
ci the value of the ith cut, associated with a change of the lda criterion (optimized II).

13
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5.2 Optimized criteria

The other problems created by Fisher lda – global description of the distributions and small denominator
“artificially” increasing the criterion to be maximized – can be solved by changing the criterion. This of course
doesn’t imply to reconsider multicut-lda, as this method doesn’t depend on the criterion that is used to determine
the lda directions themselves. Actually, multicut-lda is even made more performant by replacing the Fisher
criterion with a criterion that takes into account the local parts of the distributions.

Two criteria, which we will call optimized, can be defined. The name optimized comes from the fact that,
by construction, they are exactly what we search : a criterion allowing the extraction of a small quantity of signal
out of an overwhelming background, taking the local, and not global, behaviour of the distributions into account :
such criteria are perfectly suited for the multicut-lda, which thereby benefits of an optimal use of the candidates
located in the region to be cut.

Here are these two criteria, formulated for the calculation of the direction of the ith lda vector :

• Optimized criterion I : given an efficiency of the ith lda cut on the signal, maximization of the amount of
background removed ;

• Optimized criterion II : given an efficiency of the ith lda cut on the background, minimization of the amount
of signal removed.

Their formulation is antisymmetric for the signal and the background, but we haven’t tested if these two criteria
are equivalent.

The reason why is that they require a sorting of the table containing the training sample candidates of
the class on which the efficiency of the cut is known (actually imposed), and this at each step of the optimization.
For the criterion I, the table that is sorted is that of the signal ; for the criterion II it is that of the background. But
when the multicut-lda method is used, the number of background candidates used is often way larger than that
of the signal candidates, as, the efficiency of each cut being a lot smaller for the background than for the signal,
the calculation of the lda directions needs to be begun with a very large sample of background. As a consequence,
searching the directions with criterion II is a lot longer, and a test has shown that the calculation time needed is
completely prohibitive.

In the following, we will therefore use only the optimized criterion I. In a mean term future, it could be
possible to create a program that uses the optimized criterion II, firstly by reading the data for each cut so as
to keep the number of background candidates used in the calculation constant, and secondly by (considerably)
reducing the number of background candidates used for the first cuts, the consequence of such a restriction being
a possible worse determination of these directions, because fewer candidates will be used.

Let’s finally mention that because of a too low statistics of the background sample, the limit on the number
of lda cuts mentioned in the previous subsection may be reached (in our study, it is the case for the Ω but not for
the Ξ), i.e. there are not enough background candidates in the training sample to calculate other directions, while
the signal to noise ratio isn’t satisfactory yet. In such a case, it may be judicious to determine the last direction
with the Fisher criterion instead of the optimized criterion ; firstly because at this stage, the amounts of signal
and background should have reached about the same order of magnitude, and secondly because for the last cut –
tighter than the previous ones –, a global, rather than local, criterion is necessary. The problem of the denominator
tending towards 0 may still counterbalance the advantage of using the Fisher criterion though.

5.3 Algorithm of the optimized criterion I

5.3.1 Function to maximize

Contrarily to the Fisher criterion, using an optimized criterion requires the implementation of a maximi-
zation algorithm (or minimization, depending on the criterion chosen ; from now on we will consider the case of
criterion I, but the algorithm is also valid for criterion II).

Let ε
Si

be the given efficiency of the ith cut on the signal and DSi
the set of candidates of the signal

sample after the i− 1 first cuts. If 1 is assigned to true and 0 to false, the number of signal candidates removed by
cutting at value ci along the axis −→ui is :

Si − Si+1 = (1 − ε
Si

)Si =
∑

−→x ∈DSi

(−→x .−→ui < ci)

14
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with Si the number of signal candidates (in the training sample) used to determine the ith direction. The value of
ci is therefore determined so as to obey the following equality :

1 −

∑

−→x ∈DSi

(−→x .−→ui < ci)

Si

= ε
Si

(6)

So the table sorting – by value of −→x .−→ui – mentioned earlier happens here. If more statistics was needed or
if the optimized criterion II needed to be tried, it would still be possible to fit within a reasonable amount of cpu

time by using only a fraction of the signal (resp. background) sample to search the value of ci, under the hypothesis
that this fraction is representative of the whole population, which is likely to be the case.

If the efficiency ε
Si

was actually used as an input data, this would cause some shifting of its value. But
using directly the numbers Si − Si+1 is more judicious, not only because it would clear out this minor problem,
but also because it allows to control the “locality degree” of the optimized criterion. This “locality degree” is
determined by : 1o) the proportion of Si that is removed, 2o) the number of candidates that are removed. The first
one needs to be higher than the typical size (in number of candidates) of the statistical fluctuations for a sample
of size Si, for the algorithm not to trig on one of those fluctuations, and the second one needs to be higher than
some fixed absolute number which ensures that the candidates that are removed are numerous enough to be really
representative of the actual shape of the signal distribution in the area that is cut. Examples of numerical values
are given in § 5.4.

The function f that is maximized is of course the number of background candidates that are removed by
the cut ; hence we can write

f : R
n −→ N

−→ui 7−→
∑

−→x ∈DBi

(−→x .−→ui < ci) (7)

where DBi
is the set of candidates of the background sample after the i − 1 first cuts.

The efficiency ε
Si

being fixed (it is a chosen parameter), the optimization consists in maximizing f as a
function of −→ui , knowing that the value of ci depends on −→ui (so it needs to be recalculated at each step).

5.3.2 Maximization algorithm

The algorithm chosen to maximize f consists in varying each coordinate of the vector −→u at a time [2]. If
the set of the possible vectors −→u is represented by an n dimension space of which a base is made of the normed
vectors −→xj = (δ1,j ,δ2,j , . . . ,δn,j) along the directions of the n observables 1, finding the maximum of f on this space
with this method is equivalent to moving step by step in this space along a vector collinear to one of the −→xj .

Such an algorithm is simple to set up, but its drawback is that it may converge to a local maximum
instead of the searched global maximum 2. This problem is partially resolved by the initial condition : the natural
start vector for this algorithm is the direction found with the Fisher criterion. This guarantees that the final result
will necessarily be better than with Fisher, and that the algorithm starts in a zone in which the global maximum
has a reasonable probability to be.

Technically, the algorithm is made of several imbricated loops. Here is their list, from the most external
one to the most internal :

– loop over the variation step size of −→u (smaller and smaller step size) ;

– “infinite” loop out of which the program exits when the vector −→u doesn’t move anymore (the maximum has
been found for the considered variation step size) ;

– loop over j (a coordinate −→xj of −→u at a time is changed) ;

– “infinite” loop out of which the program exits when the vector doesn’t move anymore (the maximum has
been reached for a variation of the jth coordinate only).

Let’s name uj , j ∈< 1,n > the n coordinates of −→u . This latter loop – research of the maximum, for a
given step and a given vector −→xj – consists in modifying −→u by changing only 3 its coordinate uj .

1. δ stands here for the Kronecker symbol : δi,j = 1 ⇔ i = j ; δi,j = 0 otherwise.
2. This drawback is shared by most of the maximization algorithms. It may be avoided by using for example a genetic algorithm.
3. Except that the vector is re-normalized afterwards.
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The variation step is the angle between −→u and the modified vector −→v in the n dimension space : the
variations are thus uniform. The variation of uj is calculated as a function of this angle. Let δj be the variation of
this coordinate uj, that is to say :

{ −→u =(u1,u2, · · · ,uj, · · · ,un)
−→v =(u1,u2, · · · ,uj + δj , · · · ,un)

Since ‖−→u ‖ = 1, we have :
(−→u .−→v )2 = ‖−→v ‖2 cos2 α

Expressing the vectors as a function of the ui and of δj and using
∑

i6=j

u2
i = 1−u2

j , we come to the following formula :

δ2
j (u2

j − cos2 α) + 2ujδj sin2 α + sin2 α = 0

The expression of δj as a function of the variation angle α is then :

δj =
−2uj sin2 α ±

√

1 − u2
j sin(2α)

2(u2
j − cos2 α)

(8)

On top of the fact that a maximum is reached, this loop may be ended by another circumstance : as
shown in figure 11, the maximum may never be reached by changing only one coordinate. In such a case, the loop
is stopped when the angle between the vector to change and the driving vector of the axis of the coordinate that
is being varied is smaller than the (angular) variation step of the vector.
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Fig. 11 – Limit cone for the variation of the vector −→u : the optimal direction is in green and the variation step of
the lda vector is the angle α. At some step of the optimization, the lda vector is the unitary vector −→u drawn in
blue. At the next step, it is vector k−→v (−→v unitary vector), of which only the first coordinate x has been changed
with respect to −→u . The next step, going from −→v to a vector that is collinear to the red vector −→w , is impossible to
pass if only the first coordinate is changed. It is therefore necessary to stop varying this coordinate and move on to
the next one.

The variation step is taken equal to 8o as a start, and then is divided by 2 until it reaches the arbitrary
limit value of 0.5o. As the variables have no normalization of any kind, the function to maximize may have a peak
along one of the variables, but of angular width much narrower than 0.5o. Such a case has not been taken into
consideration for the results presented farther in this note ; it has no consequence on the Fisher direction but results
in a possibly not totally achieved optimization.

A way out that does not involve a complex variable transformation could be to keep dividing the angle
by 2 until all the variables have been used at least x times in the optimization. This has been tried on other data
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and did not appear to be satisfactory. A normalization of all the variables by their variance seems to provide better
results, but this is still an ongoing study.

5.4 Determining the cut values

As has been written above, the value of a cut is determined as a function of the efficiency of this cut on
the signal, through equation (6).

This efficiency is chosen such as the (absolute) number NSout
of signal candidates from the training sample

which are removed by the cut is high enough to be insensitive to the statistical fluctuations, and low enough for
the efficiency of the cut to be high – so as to stay in a local description of the distributions.

In order to know better the landmarks between which NSout
can be chosen, we have done a study with

only one lda cut, on the Ξ. Two observables have been chosen, in order to define the direction −→u simply by an
angle. The number of background candidates that are filtered out can then be plotted as a function of this angle,
and this plot can be drawn for various values of the cut efficiency on the signal, i.e. for various values of NSout

.

As expected, it appears that when NSout
is too low, fluctuations appear in the curve and finding the

maximum becomes difficult. Moreover, the maximum would only be representative of this training sample. When
NSout

is too high, the maximum is very well defined, but the angle corresponding to this maximum is very close to
the angle found by the Fisher criterion, and the gain in amount of background cut is low : in such a case, NSout

is a
large enough proportion of the total amount of signal to give the optimized criterion a “tendency of being global”.

In this 2-dimension study, a reasonable value of NSout
was 200, but the number used in what follows

ranges from 500 to 1500, with 25 dimensions, for the training candidates of the zone that is cut to be statistically
representative of the actual population that is cut.

5.5 Statistics necessary

5.5.1 Evaluation of the statistics necessary

The first method which comes to mind to evaluate the statistics needed in the training samples, as well
as to do systematic studies dealing with the determination of the lda directions, consists in checking that, under
different conditions, similar directions are found.

This method, for mathematical reasons, can’t work : whichever the criterion used, an optimization is
performed 1, consisting in determining the position of the global maximum of a surface in an n-dimension space
(the coordinates of the lda vector).

Firstly, because of the algorithm used, the maximum that is found is actually local. It may possibly be
the same as the global maximum, but this isn’t guaranteed. It is therefore not impossible that, for quite similar
starting configurations, the optimization falls into two different local maxima, in which case the two directions
which we want to compare will be far one from another and can even have different performances.

Secondly, the determined local maximum isn’t necessarily a narrow and well-defined peak : it could be a
large plateau covering a wide range of lda directions. In such a case, two distinct starting configurations may lead
to directions which are far apart – each corresponding to a little fluctuation in the plateau (possibly of statistical
origin) reached by the optimization – but having yet the same performance.

Hence one shouldn’t look at the angular proximity of two directions to compare the relevance, the stability
or the consistency of two configurations or methods, all the more so as using the multicut method strongly enhances
the effects mentioned above, as the ith direction depends on all the i−1 previous ones.

One solution – very heavy to set up, so we didn’t try – consists in defining a discriminancy criterion,
and in using it to compare the methods or the configurations. In our case, discriminancy in its usual meaning is
of little use, as we need to extract a class according to criteria that are known only after the analysis, and not
discriminate two classes. It is therefore better to define a performance (a cost function), and such a variable can be
calculated only after the analysis ; this is the cause of the heaviness of this solution. A good performance criterion
is for example the statistical uncertainty on the number of Ξ integrated in p⊥ and corrected for the efficiency, taken
with the value of the last lda cut which gives the smallest error bar.

1. When the Fisher criterion is used, the optimization doesn’t appear in the program but is yet made : through the fact that the
mathematical expression of its result is known.
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Determining the minimal statistics needed for the calculation of the lda directions can then be done by
calculating the performance for various sizes of the training samples (it should then be watched that the statistics
of the test sample itself is high enough). In theory, the performance should rise with the size of the training samples,
and saturate when the latter reaches the minimal size necessary for a good determination of the lda directions.

The size of the test sample is a smaller problem, firstly because what is compared here are performances
(as opposed to directions ; all vectors which image is in a common plateau have the same performance), and secondly
because real data are used, and they are more numerous than the simulated data. Using real data doesn’t lead to
a problem with identifying the noise and the signal as this is not required to calculate a performance : a simple
counting is enough.

When the statistics of the simulated data is high enough, another solution can be considered : these data
can be divided into a training sample and a test sample. Doing so avoids going through the whole analysis process
but makes the definition of a performance be less obvious. An estimation of the performance has to be substituted
to it, and could be obtained via the efficiency of the cuts on the test samples and the known ratio between the
amount of signal and background in the real data for a given cut level (whichever, under the hypothesis that the
efficiency obtained on the test sample matches the real efficiency).

A more lazy way to do than trying for various amounts of candidates in the training samples, but a priori
as reliable, is to check that the performance (or its estimation) of the ith lda cut is higher than that of the i−1th cut
tightened beyond the cut value at which the ith cut should begin to be applied. If it is not the case, it is a strong
indication that the statistics used to determine the ith direction was not sufficient.

5.5.2 Fisher criterion

Using the Fisher criterion allows to temper the arguments brought in the previous paragraph : Fisher
being a global criterion, it is almost insensitive to the local properties of the distributions. The lda directions
determined with this criterion are therefore more stable with respect to a change in the method or of the statistics
used.

This being said, comparing two directions remains perilous. However, an interesting consequence of Fisher’s
criterion being global is that the evolution of the direction of the lda vector with the cut number can be utilized,
when the multicut method is used.

The statistics removed by the cut number i will have a low influence on the determination of the next
direction, it can therefore be expected that this latter is close to the previous one, modulo the plateau effect. This
can be seen in the graphs that show the evolution of each of the n coordinates of the lda vectors as a function of
the number of the cut, presented in figure 12 for two coordinates.
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Fig. 12 – Oscillations of the 21-coordinate lda vector when the Fisher criterion is used : on the left, evolution of the
9th (in green) and 17th (in orange) coordinate of each of the 30 lda vectors calculated (for clarity, the 9th coordinate
has been multiplied by 20 and shifted down by 0.15). On the right : evolution of the number of signal (green) and
background (red) candidates used to calculate each of the 30 directions. The blue line materializes the beginning of
the oscillations (left hand plot), and corresponds to 10 000 candidates (right hand plot).
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These graphs show that the direction evolves smoothly until some cut number, from which oscillations
begin to show up, and then grow. This particular cut has therefore been determined with training samples which
size is equal to the minimal statistics needed to calculate correctly the lda vector. The number of candidates of
the least populated sample (the background sample) at this stage is about 10 000. A look at figure 13 gives 11 000,
and other studies all give a number between 10 000 and 12 000 for the beginning of the oscillations. Hence this will
be considered as the lower limit for the statistics of either training samples, signal and background.
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Fig. 13 – Similar study to that of figure 12, with 10 coordinates. The left hand figure is this time the square of each
coordinate (the sum equals 1 because the lda vector is normalized), after a normalization of the 10 axis such as
the coordinates of the first lda vector are all equal to 1/

√
10

This limit has been determined with n = 10 and n = 21 dimensions and seems independent of the number
of observables, which is a consequence of the fact that the distributions are projected on a 1-dimension sub-space
(the lda axis) for the calculation of the direction.

It can be objected that the oscillations may reflect the fact that the statistics cut at this stage becomes a
significant proportion of the total statistics, and that Fisher hence becomes sensitive to the part that is cut, leading
to the behavior illustrated by figure 14 for the optimized criterion. However, a still preliminary study done with
the “lazy method” described at the end of § 5.5.1, applied to other data, seems to confirm that a minimal amount
of candidates in the training samples is in the range of 7 000 to 10 000.
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Fig. 14 – Oscillations of the lda vector when an optimized criterion is used : first (left) and second (right) directions
given by the multicut method
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5.5.3 Optimized criterion

All this is unfortunately not valid when an optimized criterion is used : as shows figure 14 on the page
before, the direction will naturally show strong oscillations with the multicut method. These oscillations are of
course normal, but they make it impossible to use the method presented in the previous paragraph to determine
an order of magnitude of the statistics needed.

So there is no simple mean of knowing this minimal statistics in the case of an optimized criterion. The
solution consists in using the maximal statistics available, and to reduce the number of dimensions used in the
space in which the lda directions are calculated (or to do a study presented in § 5.5.1).

Surprisingly, a still preliminary study done with other data by using the “lazy method” of § 5.5.1 indicates
that only 2 000 candidates would be enough to determine correctly an optimized direction.

As an example, in the study done on the multi-strange baryons, around 70 000 signal candidates and about
2 000 000 background candidates have been used in the training samples for the first direction. The last direction
used in the analysis has been determined with 50 000 signal and 33 000 noise for the Ξ, 26 000 signal and only 7 000
noise for the Ω. More details can be found in chapter 5 of [4].

5.5.4 Possible and impossible solutions

Various solutions exist to reduce the number of dimensions of this space, but not all of them are realizable :

– calculation of the discriminancy as a function of the number of directions ;

– under-optimal lda ;

– Principal Component Analysis.

Actual pair with highest performance

Pair with highest performance containing the best variable

Variable with highest performance

Fig. 15 – Drawback of under-optimal lda : the black crosses symbolize the n variables that are usable in lda ;
under-optimal lda provides the most performant pair of directions (in brown) among the pairs which contain the
most performant variable (in orange), but the actual most performant pair (in green) actually doesn’t contain the
most performant variable

Calculation of the discriminancy with respect to the number of directions : it consists in determining the
value of a “performance criterion” of the cuts obtained (this is traditionally the discriminancy, but, as we have
seen, in our case the definition of a performance downstream the analysis is needed) as a function of the number
of variables used in the lda. For each number of variables j 6 n, there exists a j-uplet which gives the best
performance Pj . Plotting Pj as a function of j gives a monotonically rising curve 1 which maximal value is Pn, and
which “derivative” tends towards 0 when j tends towards n (cf the green curve in Fig. 16). A value m of j can
therefore be defined such as Pm is close enough to Pn, m being however significantly lower than n.

So using the corresponding m-uplet gives cuts which performance is close to the maximal performance,
with yet a space of smaller dimension. The main drawback of this method is that it requires the test of all the
combinations of directions, i.e. 2n − 1. For some applications, an automatic program could possibly be used for
n = 10 (1023 combinations), or with limiting hypothesis on m such as 8 < m < 15, but for most of the applications
n is a few tens 2, so this method is actually never used.

1. This is the case when the statistics of the training samples is high enough. This isn’t our case and is precisely the reason why
reducing the number of dimensions is desirable, it is thus possible to obtain a curve which has a maximum beyond which the number
of dimensions is too high for the available statistics to provide the optimal lda direction.

2. In our case : n = 25 gives 33 million of combinations.
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5. lda improvements

A partial solution is under-optimal lda : this recursive method consists in searching the most performant
j-uplet only among those which j−1 directions are those of the most performant j−1-uplet. So the variable giving
the most performant cut is first searched, then the pair of variables which gives the most performant lda cut is
searched among the pairs that contain the previously selected variable, and so on. The number of combinations to

test is then reduced down to
∑n

j=1 j = n(n+1)
2 , which still makes 325 combinations for 25 dimensions... i.e. a whole

year of calculation on the farm for the present analysis and for a performance defined downstream the analysis.
As illustrated by figures 15 and 16, the main drawback

n jm m

Pj

1 2

Under−optimal LDA

LDA
Exhaustive

Fig. 16 – lda performance Pj as a function of the
number j of variables used. A satisfactory perfor-
mance (in blue) is reached faster by an exhaustive
test of all the combinations (m1 variables used, in
green) than by under-optimal lda (m2 > m1 va-
riables used, in red)

of this method is that, generally speaking, the most performant
j-uplet doesn’t contain the most performant j − 1-uplet, hence
the name of “under-optimal lda”. However, this solution is
often used, sometimes in combination with the first method
presented : an exhaustive search is made for e.g. 5 variables,
and under-optimal lda is started from a search of the 6-uplets
containing the absolute most performant 5-uplet.

The Principal Component Analysis (pca) is a matrix-
based analysis (based on a diagonalisation, so it is simple and
fast) which gives for a distribution an ordered base of the space
(−→v1 ,−→v2 , · · · ,−→vn) which first vector −→v1 drives the direction along
which the distribution has most information, and so on for the
other vectors. The proportion of information along one of the
vectors −→vj is given by the square of the corresponding eigenva-
lue λj . It is therefore possible to compress data, storing the m
first coordinates of each observation corresponding to a com-

pression of 100
(

1 −∑m
j=1 λ2

j

)

%.

In our case, the pca would be used to reduce the
number of variables used in lda, by getting rid of the directions
which don’t carry enough information. These latter can change at each step, so the pca needs to be applied in the
n-dimension space after each lda calculation (and cut), determined in a mi dimension sub-space.

The main problem with this method is that the pca y

x

LDA direction

PCA axis

Fig. 17 – Least informative direction, being yet
the most discriminant

is not a pattern classification method, it therefore doesn’t deal
with several distributions. So for this application, the signal and
background distributions need to be mixed (with equal statis-
tics, except if more weight is wanted for one of the classes)
before applying the pca. This in itself is not a problem, but
the lda direction determined in n dimensions (whole space) is
not guaranteed not to be orthogonal to the first pca direction
(case of parallel and long signal and background distributions,
illustrated in figure 17), in which case the directions removed
by the pca are precisely those which have the best discrimi-
nancy... There is no mathematical criterion to evaluate a priori
the improvement brought by the pca ; the only solution is to
try with and without the pca, and then to compare. The fact
that the pca is simple and fast to set up makes it preferable to
under-optimal lda, but one method doesn’t replace the other :
under-optimal lda may help where the pca doesn’t bring any improvement.

The pca can also be used to solve the problem of Fisher criterion’s denominator going to 0 : correlations
between variables can indeed be reduced, by a process called whitening, which consists in calculating the pca matrix
of the distributions, and then to normalize the distributions along the directions of the pca base by a factor of 1

λj
,

λj being the eigenvalue associated to the jth vector of the pca base. In our case however, the linear correlations
can’t be completely removed, as both distributions (signal and background) are simultaneously renormalized by
the pca, and their correlations are not necessarily identical. It is yet a nice tool to apply the optimized lda in a
normalized base, i.e. with all variables showing values of the same order of magnitude.
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6. How to choose the last lda cut value
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6 How to choose the last lda cut value

The last lda cut value is determined in a different way than the others : the variable used to choose it is
neither the efficiency nor the signal to noise ratio, but the relative uncertainty. The latter is indeed directly related
to the statistical error bar on the final result. For this error bar to be as small as possible, the last lda cut needs
to be varied until the value that leads to the smaller relative uncertainty is found.

It is noteworthy that lda provides such an easy search of this extremum : only one parameter needs to
be varied : the value of the last cut (all the previous values are optimal). With the classical cuts, this extremum is
searched by varying as many parameters as there are cut variables, i.e. a dozen.

The search is all the easier with lda as the variation of the relative error with respect to the cut value is a
function that is piecewise monotonic : when the cut is tightened with respect to the optimum, the amount of signal
drops faster than the error bar because the amount of background is low. When the cut is loosened with respect
to the optimum, the amount of background rises faster than that of signal, and the latter rises slowlier than the
error bar. As a consequence, a valley-shaped curve is obtained and the minimum is easy to find.

The phenomenon is illustrated by figure 18 for several variables : signal to noise ratio, purity, significance 1

and relative uncertainty 2, all as a function of the amount of signal (or efficiency). The locus drawn in each of these
diagrams by a loosening or a tightening of the last lda cut is shown in green, to be compared to the red dot which
shows the “performance” obtained with the classical cuts.

The amount of signal being proportional to the efficiency, these two variables are strictly equivalent, but

1. Defined here as S
√

S+N
.

2. Equal to

√
S+N+k2Nestim

S
, with k the scaling factor used to have the estimated background match the real background.
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6. How to choose the last lda cut value

the simulation has not been used yet at this stage, so the efficiency remains unknown. This is the reason why the
amount of signal is chosen as a variable. The variation of this amount of signal gives the direction of the variation
of the lda cut (the efficiency drops when the cut is tightened).

The method to choose the number of lda cuts to apply is illustrated in figure 19 : in the right-hand plot,
the magenta points show the position of the cut along the penultimate and the ante-penultimate directions, which
are determined by the program ; i.e. at the magenta point located at the intersection of the curves “direction 28”
and “direction 29” for example, the algorithm has determined a new lda direction (the 29th ) whose performance
is higher than that of the previous direction. The envelope of these valley-shaped curves is the locus drawn when
the lda cut is gradually tightened (and directions progressively added) ; this locus has a minimum, which is the
minimum of the curve obtained with the searched number of directions (30 on the figure). The optimal number of
cuts to use in this case is therefore 30. In practice, one can determine visually on an invariant mass plot the number
of lda cuts that give the same amount of background (under the peak) as the classical cuts, can then determine
the value of the minimum for the neighbouring numbers of cuts, and then compares the values to obtain directly
the optimal number of cuts 1.

Determining the number of directions to use by drawing the envelope of all the valley-shaped curves can
be done in only one pass on the data (possibly even just on a subset), so it is not at all necessary to have classical
cuts at disposal to start with : lda is a totally stand-alone method.

This searched minimum is perfectly visible (bottom-right subfigure in Fig. 18, relative uncertainty as a
function of the amount of signal). Yet, the final value of the lda cut is not determined at this stage, because the
error bar due to the efficiency correction (or any other further “manipulation” of the data) is not taken into account
in this relative error. The graphs shown here just give an idea of the zone in which the lda cut has to be varied.
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Fig. 19 – Method for tuning the last lda cut ; the amount of signal is bijectively linked with the lda cuts tightening

It furthermore has to be noticed that those diagrams have been built using all the candidates (integrated
in p⊥). Given that the improvement provided by lda is strongly p⊥-dependent (cf. § 7), the relative uncertainty
on a variable, such as the corrected production yield for example, will reach its minimum for an lda cut value for
which the minimum of the (raw, uncorrected) signal relative uncertainty will be minimal only in some restricted
range in p⊥. The value of the lda cuts therefore has to be chosen for each considered physical variable. In practice
however, these values are close one to another and a common lda cut value can be found so as to be close to
the absolute minimum for several physical observables simultaneously, at least in the analysis given as an example
here.

1. If the statistics in the training samples is not sufficient to calculate enough lda directions, the number of directions to use should
be the maximal number allowed by the statistics of the training samples, which, as already said, is the case for the Ω analysis shown
here, but not for the Ξ analysis.
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7. Some results
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Fig. 20 – Invariant mass distribution of the Ω + Ω candidates after lda (in green) and classical (in red) cuts. Top
row, cyan : distribution of the candidates selected by both sets. Bottom left, cyan : candidates selected only by the
lda cuts. Bottom right, cyan : candidates selected only by the classical cuts

7 Some results

7.1 Candidates selected by both sets of cuts

Figure 20 shows, for the Ω, the proportion of signal and background selected by both the classical and
lda sets of cuts, or, on the contrary, selected only by one of the two sets of cuts. For the signal, almost half of
the Ω selected by the lda cuts have not been selected by the classical cuts, which means that a significant part
of the selected populations is not shared by both sets of cuts. If the results obtained later on are similar for both
methods, they are all the more reliable as the part of the phase space selected by both sets is small.

As for the background, in both cases more than 75 % of it are candidates that haven’t been selected by
the other set of cuts, which also guarantees reliable results if they are similar, from the evaluation of two different
backgrounds.

7.2 Characteristics of the lda cuts

A possibility to check that no classical set of cuts is close to the lda cuts found is the check that the
distributions of the various variables after the lda cuts are not cut steeply.

A more subtle way to observe the behavior of the lda cuts uses the definition of a steepness criterion, i.e.
a variable Q which is equal to 0 when the cut is uniform, and to 1 when it is as steep as a classical cut.

Let f be the distribution of a cut variable x on the limited domain [0;X ] before the considered cut is
applied (for example x < xcut), and g the distribution after this cut, which has an efficiency ε. The criterion Q
sought satisfies among other things :

– uniform cut =⇒ g

f
= cst =⇒ Q = 0 ;

– steep cut =⇒ g

f
= 1 for x < xcut,

g

f
= 0 for x > xcut =⇒ Q = 1.
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7. Some results

Let F =

∫ x

0
f(u)du

∫X

0
f(u)du

be the normalized primitive of f , F−1 its inverse function :

F−1 : [0; 1] −→ [0; X ]
∫ x

0 f(u)du
∫ X

0 f(u)du
7−→ x

and h the function defined by h =

(

g

f

)

◦F
−1 :

h : [0; 1] −→ [0; 1]

x 7−→ g

f

(

F
−1(x)

)

By construction, h draws the ratio g/f as a function of the normalized integral to x under f . The schemes of
figure 24 on page 27 give the shape of h for various cuts. It appears that their steepness can be determined directly
from |h− ε| ; a further normalization by the integral (2ε(1− ε)) then leads to the formula of the searched criterion :

Q =
1

2ε(1 − ε)

∫ 1

0

|h − ε| (9)

When the steepness Qj of an lda cut is very close either to 0 or to 1 for each variable j (for both the
signal and the background), it is possible to have a classical set of cuts equivalent to the lda cut applied. When
only some of the steepness factors are equal to 0 or 1, there is only a low probability that the corresponding set of
classical cuts give identical distributions to those obtained with lda for the variables for which the cut steepness
lies between 0 and 1. Figures 21 and 22 on the following page show that this is anyway not the case in the Ξ
analysis, for any of the lda cuts used. The situation is similar for the Ω.

Fig. 21 – Steepness factor of the lda cuts on
the Ξ + Ξ signal : the steepness factors Qj of
each variable j have been added and assigned
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7. Some results

Fig. 22 – Distribution of the steepness of the Ξ lda cuts on the 25
variables, in black. The blue distribution is that of the steepness of
all the lda cuts together on the 25 variables (it has been normalized
for clarity)
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Fig. 23 – Example of 2-dimensional distributions which lead to a null
steepness of the lda cut along both coordinates. The cut hyperplane
is the blue line that is perpendicular to the lda direction

An important remark is that the fact that the steepness of an lda cut for a variable is zero doesn’t imply
that this variable is useless in the calculation of the lda direction, as proved by the example of figure 23 : apart from
the extremities of the distribution (though it is possible to find distributions which also pass this criterion), the
background and signal are uniformly cut in x and y ; the steepness of this cut is therefore zero for both variables,
while the lda direction is nothing but a linear combination of them. So the steepness factor is useless for the
problem mentioned in paragraph 5.5 concerning the lowering of the number of variables used in lda.

7.3 Improvement brought

As for the previously given Ξ and Ω results, the plots presented here have been obtained on the central
collisions of the year 2001 Au-Au 200 GeV data. Details can be obtained in chapters 5 and 6 of [4].

Due to a bug in the lda code discovered after the analysis was completed, 4 of the 25 variables used in
Fisher were actually not used in the optimization : the cos θ∗ and the number of hits of the three daughter tracks
in the tpc. This has no influence on the physical results, but it means that the actual improvement that lda can
bring is higher than shown here.

Figure 25 on page 28 shows the invariant mass distributions obtained for the Ξ and for the Ω with both
sets of cuts, lda being tuned for the background under the peak to be at the same level as that obtained with the
classical cuts. An improvement in raw number of signal is clearly visible for both particles. The improvement also
appears to be higher for the Ω than for the Ξ : this is a consequence of the fact that the classical analysis cuts are
much tighter for the Ω (the efficiency of those that are replaced by the lda cuts is around 20 %) than for the Ξ
(about 45 %), which means that the “remaining space” for an improvement is much lower for the Ξ (factor of 2)
than for the Ω (factor of 5).

Although the optimization is not based on this variable, the behavior of the lda improvement factor F
as a function of p⊥ is interesting to look at. It is defined as follows :

F =
SA − SC

SC

(10)

where SC and SA are the uncorrected amounts of signal obtained respectively with the classical and lda cuts.
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Fig. 26 – Ω + Ω invariant mass distributions for the p⊥ bin 1.4 < p⊥ <
1.8 GeV/c with the classical (red) and lda (green) cuts (the magenta
and cyan error bars show the background level estimated with the rotating
method)

The improvement brought by lda for the Ω in the p⊥ bin 1.4 < p⊥ < 1.8 GeV/c is shown in figure 26 : it
is obvious that the improvement is higher than that integrated in p⊥, as one can see by comparing with figure 25,
which means that the improvement is p⊥-dependent.

The variation of F as a function of p⊥ is presented in figure 27. For the Ξ as for the Ω, a peak at mid-p⊥
is observed. This is a consequence of the use of candidates unselected in p⊥ in the lda training samples : the
calculated lda directions have logically favored the candidates of the p⊥ zone where they are most numerous, i.e.
those in the mean-p⊥’s.

This result is interesting and promising, as it confirms that it is possible to create lda sets of cuts that
are specific to some p⊥ regions which suffer a low statistics (p⊥ < 1 GeV/c and p⊥ > 3 GeV/c in this analysis), by
using in the training samples only candidates that belong to those zones.

In the case of the Ξ, the improvement factor seems to rise again at high-p⊥ : this is not explained and
could result from the shape of the Ξ distribution in the phase space.
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Conclusions

From a multi-variable pattern classification method, the Fisher linear discriminant analysis, we have develo-
ped a method of selection of the signal among a high amount of background : the multicut-lda with optimized

criterion, which appears more performant, simpler and more handy than the classical selection method.
The results obtained on the Ξ show a good agreement between the classical and lda methods [4]. The Ω

analysis also shows that both methods agree with each other, but the large statistics uncertainty makes it a weaker
proof as the Ξ. Below follows a list of the various advantages provided by lda (there is no list of drawbacks as I
haven’t found any yet ;-) ).

Comparison with the classical cuts and the neural networks

The table on the next page shows some characteristics of the two mainly used methods – the classical cuts
and the neural networks – and of lda. The words emphasized in bold (and green) are the positive characteristics.

The difference between the classical cuts and lda is obvious, but the preference of lda over the neural
networks may require additional explanations : the choice of lda over a pattern classification method like the neural
networks is justified by its simplicity.

Neural networks reach, in theory, a higher performance. But in practice, their non-linearity, the problem
of overtraining (which doesn’t exist with lda, the locality degree of description of the distributions is managed in
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a trivial way), the choice of the number of hidden layers and of neurons make them difficult to use and make their
training be long and tedious. A bad choice of their configuration or a not careful enough training rapidly result in
lower performances than what could be expected. Neural networks also suffer from the huge background statistics :
they focus on removing its overwhelming part and leave untouched the comparatively small amount of background
which is close to the signal area. This problem can be avoided by cascading several neural networks (it can be seen
as an equivalent of multicut-lda), each stepping up the S/N ratio by an order of magnitude, but at the cost of an
exploding number of parameters of the method.

Classical cuts Multicut LDA Neural networks

• Optimized No Yes Yes

• Linear Yes Yes No
• Setting up Trivial, fast Easy, fast Complex, long

(Choose # layers and neurons)

• Training None Simple Complex
or long and complex Overtraining

• Final tuning Complex, long Simple, fast Simple, fast
• Parameters Few Few Many
• Clarity Under control Under control “Black box”
• Boudary shape Linear Linear, but Non linear

multicut ⇒ OK
• Selected volume Connex Connex Non connex

The two advantages of a neural network over lda are its non-linearity (which is also a drawback) and its
ability to select as being signal a zone of the phase space which may not only not be convex, but also not even
connex. The first advantage disappears with the developments of lda that we have done, thanks to the application
of several lda cuts. Remains the second one, from which no large improvement should be expected, firstly for the
reasons mentioned above, and secondly because it is rather unlikely that the zone in which the signal lies is not
connex or has a sizable concavity.

Lowering of the size of the statistical error bars

The gain in relative uncertainty brought by lda is 20 to 30 % for the Ω (depending whether the variable
looked at is the inverse slope or the production yield at mid-rapidity). For reasons given earlier, the improvement is
smaller for the Ξ (around 20 %) but a study showed that replacing also the reconstruction cuts with lda cuts rised
the Ξ raw yield improvement from ' 20 to ' 45 % (for an equal amount of background) [6]. As a consequence, a
30 % drop of the relative uncertainty on the Ξ production yield could also be expected, but we didn’t think this
was worth a replacement of the reconstruction cuts and a re-production of the strangeness data.

The improvement is therefore not sufficient to be able to measure new observables. Yet, the statistical
error bars are sensibly reduced. It also has to be kept in mind that this improvement has been obtained over
optimized classical cuts.

For other centralities, other energies and other collision systems, the classical cuts are not optimized and
it has been shown that lda provides quicker and better results than the classical method, with an improvement
reaching for example 40 % for the Ξ raw yield with though classical reconstruction cuts [6, 7], which results in
a wider possible coverage in p⊥ (this was already foreseeable from the central Au-Au 200 GeV analysis results,
although not presented in [4], as lda provides a usable Ξ signal in the bin 0.5 < p⊥ < 0.7 GeV , while the classical
cuts don’t). The development of an optimizable (and optimized) and performant analysis method was all the more
necessary as the future runs will often be scans in energy or in atomic specie, which deliver a smaller amount of data
than the long 200 GeV p-p and Au-Au runs and offer little hope for extra data from further similar runs. Accurate
measurements of the interesting observables in these “smaller” runs therefore require methods which extract the
maximum out of the data.

Fast and simple cut optimization

lda, by providing an optimized transformation from the n-dimension space of the variables used as cuts
to a 1-dimension subspace, makes cut-tuning be extremely fast, as it just consists in finding the minimum of a
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1-dimension function that is monotonic on both sides of its minimum. Thus the cut tuning is fast and simple.
Furthermore, a set of cuts determined on e.g. the central Au-Au 200 GeV data can be used extremely

quickly on events of lower multiplicity, such as mid-central / mid-peripheral events [4] or 62 GeV collisions [7].
It simply consists in loosening the lda cuts by finding the new minimum of the 1-dimension function. If the gap
in multiplicity is not too important, the performance should not be too different than that given by an lda set
specially trained on such events.

Some observables though require an improvement in a specific domain. For example the production yields
are very sensitive to the low transverse momenta – because it decreases exponentially and because the contribution
of the extrapolated part in the total measured yield is very large for the multistrange baryons (more than 40 %
for the Ω) –, the RAA requires a spectrum in p-p collisions, etc... lda helps there by giving quickly optimized cuts
suited for the conditions wanted, as one trains it with candidates that lie in the portion of the phase space where
the improvement is needed.

Internal lda systematic error

Because lda transforms the phase space into a 1-dimension subspace, it provides a natural systematic
study that consists in tightening and loosening the lda cut while keeping it optimal, thus avoiding all the efforts
needed to find a second set of classical cuts that would be both efficient and different enough from the first one. This
1-dimension space offers a total control over the variation range around the nominal value in terms of efficiency
and raw amount of signal.

To improve a systematic study, it is also fast and easy to find one or several other sets of lda cuts
determined by adding (or removing) classical cuts 1 or any other kind of selection. This may simply be lda cuts
determined in different p⊥ ranges to get a better improvement in each region, and used over the whole spectrum
for a systematic comparison, for example.

Classical/lda systematic error

A systematic error can also be taken out of the comparison of the classical and lda results, as both
methods cut very differently in the phase space. If no classical cuts have been determined before the use of lda, or
determined but not optimized, this could be impractical because the statistical error on the classical results would
be large. In such a case, it may be relevant to develop a simple method to derive a reasonably good set of classical
cuts from an lda set. We have not investigated this possibility (yet) ; it may be that there is no simple method
and that, even though lda would provide an estimate for a classical starting point (which already saves time), one
would still need to tune by hand or to use a maximization algorithm in n dimensions.

Cut optimization with an internal tracker

Last but not least, lda can be used for an easy cut optimization with the Silicon internal trackers (svt

and ssd). As the strange particles have a large cτ , they can decay before and after any layer 2. Hits in the most inner
layers improve the accuracy of some cut variables, so different sets of cuts should be used. To take full advantage
of the internal trackers, a classical method would require the creation of one set of cuts per configuration of the
points in the Silicon layers. Assuming an efficiency of the detectors close to 100 %, a 3-particle decay with 4 layers
of Silicon leads to 125 sets of cuts to be found !

lda allows to use only one set of cuts (and optimized on top of that) for all configurations. The idea is
to incorporate the configurations as lda variables, for example the number of hits in the internal trackers for each
daughter track 3. So an optimal integration of the Silicon detectors in the cuts simply requires the addition of two
(for Λ and K0

s ) or three (for Ξ and Ω) variables to lda.

1. It might sometimes be necessary to add some classical cut, for example to get rid of an observed or known bias that occurs in a
certain zone of the phase space (often geometrical, which involves e.g. z, but also the decay lengths), or to remove explicitly a given
configuration (reflections for example, or splitting via the number of hits in the tpc).

2. A charmed meson would necessarily decay before the first layer, which simplifies the problem a lot because, the efficiency of the
detectors being high, one may require that all layers, or all but one, have been hit by the daughters.

3. With some weighting to take into account which layers (rather external or rather internal) have been hit, if we want to consider
the case of layers with efficiency below 100 %.
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